Type: \(\displaystyle A^{1}_2\) (Dynkin type computed to be: \(\displaystyle A^{1}_2\))
Simple basis: 2 vectors: (1, 2, 2, 2, 2, 1, 1), (0, -1, 0, 0, 0, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: D^{1}_4
simple basis centralizer: 4 vectors: (0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 48
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{1}+\omega_{2}}+9V_{\omega_{2}}+9V_{\omega_{1}}+29V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, -1, -2, -1, -1)(0, 0, 0, -1, -2, -1, -1)g_{-29}-\varepsilon_{4}-\varepsilon_{5}
Module 21(0, 0, 0, -1, -1, -1, -1)(0, 0, 0, -1, -1, -1, -1)g_{-24}-\varepsilon_{4}-\varepsilon_{6}
Module 31(0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, -1, -1, -1)g_{-19}-\varepsilon_{5}-\varepsilon_{6}
Module 41(0, 0, 0, -1, -1, 0, -1)(0, 0, 0, -1, -1, 0, -1)g_{-18}-\varepsilon_{4}-\varepsilon_{7}
Module 51(0, 0, 0, -1, -1, -1, 0)(0, 0, 0, -1, -1, -1, 0)g_{-17}-\varepsilon_{4}+\varepsilon_{7}
Module 61(0, 0, 0, 0, -1, 0, -1)(0, 0, 0, 0, -1, 0, -1)g_{-13}-\varepsilon_{5}-\varepsilon_{7}
Module 71(0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, -1, -1, 0)g_{-12}-\varepsilon_{5}+\varepsilon_{7}
Module 81(0, 0, 0, -1, -1, 0, 0)(0, 0, 0, -1, -1, 0, 0)g_{-11}-\varepsilon_{4}+\varepsilon_{6}
Module 91(0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, -1)g_{-7}-\varepsilon_{6}-\varepsilon_{7}
Module 101(0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, -1, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 111(0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, -1, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 121(0, 0, 0, -1, 0, 0, 0)(0, 0, 0, -1, 0, 0, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 133(0, -1, -2, -2, -2, -1, -1)(1, 0, 0, 0, 0, 0, 0)g_{1}
g_{8}
g_{-40}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 143(-1, -1, -1, -2, -2, -1, -1)(0, 0, 1, 0, 0, 0, 0)g_{3}
g_{9}
g_{-39}
\varepsilon_{3}-\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 151(0, 0, 0, 1, 0, 0, 0)(0, 0, 0, 1, 0, 0, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 161(0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 1, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 171(0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 181(0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 1)g_{7}\varepsilon_{6}+\varepsilon_{7}
Module 193(-1, -1, -1, -1, -2, -1, -1)(0, 0, 1, 1, 0, 0, 0)g_{10}
g_{15}
g_{-37}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 201(0, 0, 0, 1, 1, 0, 0)(0, 0, 0, 1, 1, 0, 0)g_{11}\varepsilon_{4}-\varepsilon_{6}
Module 211(0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 1, 1, 0)g_{12}\varepsilon_{5}-\varepsilon_{7}
Module 221(0, 0, 0, 0, 1, 0, 1)(0, 0, 0, 0, 1, 0, 1)g_{13}\varepsilon_{5}+\varepsilon_{7}
Module 233(0, 0, -1, -2, -2, -1, -1)(1, 1, 1, 0, 0, 0, 0)g_{14}
g_{-38}
g_{-36}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 243(-1, -1, -1, -1, -1, -1, -1)(0, 0, 1, 1, 1, 0, 0)g_{16}
g_{21}
g_{-34}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 251(0, 0, 0, 1, 1, 1, 0)(0, 0, 0, 1, 1, 1, 0)g_{17}\varepsilon_{4}-\varepsilon_{7}
Module 261(0, 0, 0, 1, 1, 0, 1)(0, 0, 0, 1, 1, 0, 1)g_{18}\varepsilon_{4}+\varepsilon_{7}
Module 271(0, 0, 0, 0, 1, 1, 1)(0, 0, 0, 0, 1, 1, 1)g_{19}\varepsilon_{5}+\varepsilon_{6}
Module 283(0, 0, -1, -1, -2, -1, -1)(1, 1, 1, 1, 0, 0, 0)g_{20}
g_{-35}
g_{-33}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 293(-1, -1, -1, -1, -1, 0, -1)(0, 0, 1, 1, 1, 1, 0)g_{22}
g_{26}
g_{-31}
\varepsilon_{3}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 303(-1, -1, -1, -1, -1, -1, 0)(0, 0, 1, 1, 1, 0, 1)g_{23}
g_{27}
g_{-30}
\varepsilon_{3}+\varepsilon_{7}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 311(0, 0, 0, 1, 1, 1, 1)(0, 0, 0, 1, 1, 1, 1)g_{24}\varepsilon_{4}+\varepsilon_{6}
Module 323(0, 0, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 0, 0)g_{25}
g_{-32}
g_{-28}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 333(-1, -1, -1, -1, -1, 0, 0)(0, 0, 1, 1, 1, 1, 1)g_{28}
g_{32}
g_{-25}
\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 341(0, 0, 0, 1, 2, 1, 1)(0, 0, 0, 1, 2, 1, 1)g_{29}\varepsilon_{4}+\varepsilon_{5}
Module 353(0, 0, -1, -1, -1, 0, -1)(1, 1, 1, 1, 1, 1, 0)g_{30}
g_{-27}
g_{-23}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 363(0, 0, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 0, 1)g_{31}
g_{-26}
g_{-22}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
Module 373(-1, -1, -1, -1, 0, 0, 0)(0, 0, 1, 1, 2, 1, 1)g_{33}
g_{35}
g_{-20}
\varepsilon_{3}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 383(0, 0, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 1, 1)g_{34}
g_{-21}
g_{-16}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 393(-1, -1, -1, 0, 0, 0, 0)(0, 0, 1, 2, 2, 1, 1)g_{36}
g_{38}
g_{-14}
\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 403(0, 0, -1, -1, 0, 0, 0)(1, 1, 1, 1, 2, 1, 1)g_{37}
g_{-15}
g_{-10}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 413(0, 0, -1, 0, 0, 0, 0)(1, 1, 1, 2, 2, 1, 1)g_{39}
g_{-9}
g_{-3}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
Module 423(-1, 0, 0, 0, 0, 0, 0)(0, 1, 2, 2, 2, 1, 1)g_{40}
g_{-8}
g_{-1}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
Module 438(-1, -1, -2, -2, -2, -1, -1)(1, 1, 2, 2, 2, 1, 1)g_{41}
g_{-2}
g_{42}
-h_{2}
h_{7}+h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-42}
g_{2}
g_{-41}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 441(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{3}-h_{1}0
Module 451(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{4}0
Module 461(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 471(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 481(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{7}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 10
Heirs rejected due to not being maximally dominant: 30
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 30
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_1
Potential Dynkin type extensions: A^{1}_3, A^{1}_2+A^{1}_1,